1
Video
Les primitives
2
Exercice
Exercice - Calculs de primitives
3
Video
Opérations sur les primitives
4
Exercice
Exercice - Primitives, exponentielles et ln
5
Exercice
Devoir sur feuille
6
Video
Définition de l'intégrale
7
Video
Calculs d'intégrales
8
Exercice
Devoir sur feuille
9
Video
Relation de Chasles
10
Video
Valeur moyenne d'une fonction
11
Exercice
Exercice - Suite et intégrales
Accède gratuitement à cette vidéo pendant 7 jours
Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !
Fiche de cours
Valeur moyenne d'une fonction
Définition
Soient $a$ et $b$ deux réels tels que $a < b$ et \(f\) est continue sur \([a,b]\).
On appelle valeur moyenne de \(f\) sur \([a,b]\), le nombre réel $\mu$ défini par :
\( \displaystyle \mu = \frac{1}{b-a} \int_{a}^b f(t)dt\)
Interprétation graphique
On peut déterminer la valeur de l'intégrale de $f$ en effectuant le produit en croix:
\( \displaystyle \mu (b-a)= \int_{a}^b f(t)dt = \mathcal{A}\)
Voici l'exemple de la fonction $f(x)=0,25x^2-1$ sur l'intervalle $[-3;7]$