1
Video
Forme canonique
2
Video
Forme canonique : méthode
3
Exercice
Exercice - Forme canonique d'un trinôme du second degré
4
Video
Discriminant, solutions
5
Exercice
QCM - Calculer, lire graphiquement et interpréter un discriminant
6
Video
Signe du trinôme
7
Exercice
QCM - Trinôme : applications du cours
8
Exercice
Devoir sur feuille
Accède gratuitement à cette vidéo pendant 7 jours
Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !
Fiche de cours
Discriminant, solutions
Un polynôme du second degré s'écrit $ax^2 + bx + c$, avec $a \neq 0, b, c \in \mathbb{R}$.
Un outil interessant pour l'étude des racines d'un polynôme du second degré est le discriminant $\Delta$, défini par $\Delta = b^2 - 4ac$.
Il faudra faire attention aux signes (si par exemple $b = -3,$ alors $ b^2 = (-3)^2 = 9$) : on pourra alors utiliser des parenthèses pour se prémunir d'erreurs de calculs.
Le nombre de racines dépend du signe du discriminant. Il existe 6 cas différents selon le signe de $a$ et celui de $\Delta$.
1) Si $\Delta < 0$, la parabole est tournée vers le haut (car $a > 0$) ou vers le bas (si $a < 0$) et il n'y a pas de racine (car $\Delta < 0$).
![]() |
Il reste 70% de cette fiche de cours à lire
Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur
lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.
|