Fiche de cours
Étape 4 : les coordonnées du vecteur position
Ayant déterminé précédemment la vitesse de la balle, on souhaite à présent connaitre sa position à chaque instant.
Il faut maintenant déterminer les coordonnées du vecteur position $\overrightarrow{OG}$, avec $O$ l’origine du repère et $G$ le centre de la balle à chaque instant, défini par $\overrightarrow{v} = \dfrac{\text{d}\overrightarrow{OG}}{\text{dt}}$, soit en d’autres termes le vecteur vitesse est la dérivée par rapport au temps du vecteur position.
Pour se faire, il faut trouver des primitives des coordonnées du vecteur vitesse. Une primitive de $v_x$ est une fonction qui une fois dérivée vaut 0 : c’est une constante notée $C_3$.
De même, une primitive de $v_y$ est $-\dfrac{1}{2} \times gt^2 + C_4$. En effet, si on dérive cette expression, on obtient alors $-\dfrac{1}{2} \times 2 \times gt + 0 = -gt $.
Les coordonnées de $\overrightarrow{OG}$ sont donc $ \left\{
\begin{array}{ccc}
x & = & C_3 \\
y & = & -\dfrac{1}{2} \times gt^2 + C_4 \\
\end{array}
\right.$