Cours Calculs d'intégrales
QCM
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

L'énoncé

Cocher la bonne réponse.


Tu as obtenu le score de


Question 1

Calculer : $\displaystyle \int_0^2 3dx$

$3$

$6$

$\displaystyle \int_0^2 3dx= \big [3x\big]_0^2=6-0=6$

$12$

Question 2

Calculer : $\displaystyle \int_0^4 -5dx$

$20$

$-10$

$-20$

$\displaystyle \int_0^4 -5dx= \big [-5x\big]_0^4=-20+0=-20$

Question 3

Calculer : $\displaystyle \int_0^3 2xdx$

$9$

$\displaystyle \int_0^3 2xdx= \big [x^2\big]_0^3=9-0=9$

$-9$

$3$

Question 4

Calculer : $\displaystyle \int_1^5 2xdx$

$35$

$15$

$24$

$\displaystyle \int_1^5 2xdx= \big [x^2\big]_1^5=25-1=24$

Question 5

Calculer : $\displaystyle \int_0^1 e^xdx$

$e$

$e+1$

$e-1$

$\displaystyle \int_0^1 e^xdx= \big [e^x\big]_0^1=e^1-e^0=e-1$

$1-e$

Question 6

Calculer : $\displaystyle \int_{-3}^2 dx$

$-1$

$1$

$5$

$\displaystyle \int_{-3}^2 dx = \big [x\big]_{-3}^2=2-(-3)=2+3=5$

$-5$

Question 7

Calculer : $\displaystyle \int_{-1}^3 2x+1dx$

$10$

$\displaystyle \int_{-1}^3 2x+1= \big [x^2+x\big]_{-1}^3=(9+3) -(1-1)=12$

$-10$

$11$

Question 8

Calculer : $\displaystyle \int_{-2}^2 4x^3dx$

$16$

$32$

$0$

$\displaystyle \int_{-2}^2 4x^3= \big [x^4\big]_{-2}^2=(16) -(16)=0$

Question 9

Calculer : $\displaystyle \int_{-1}^1 e^{-x}dx$

$e-1$

$e-e^{-1}$

$\displaystyle \int_{-1}^1 e^{-x}dx= \big [-e^{-x}\big]_{-1}^1=-e^{-1}+e^1=e-e^{-1}$

$1-e$

Question 10

Calculer : $\displaystyle \int_{2}^e \dfrac{1}{x}dx$

$\ln 2$

$1- \ln 2$

$\displaystyle \int_{2}^e \dfrac{1}{x}dx= \big [\ln x\big]_2^e=\ln e -\ln 2=1-\ln 2$

$\ln 2-1$