Soit la fonction $f$ définie et deux fois dérivable sur l'intervalle $[−3 ; 4]$ de courbe représentative $C_f$ donnée ci-dessous :
1) Résoudre graphiquement l'inéquation $f '(x)≥0$.
2) Résoudre graphiquement l'inéquation $f ''(x)≥0$.
1) La dérivée $f'$ est positive lorsque la fonction $f$ est croissante, c'est à dire ici sur l'intervalle $[-2 ; 2]$.
2) La dérivée seconde $f''$ est positive lorsque la fonction $f$ est convexe, c'est à dire ici sur l'intervalle $[-3 ; 0]$.