Cours L'incontournable du chapitre

Propriétés algébriques

Accède gratuitement à cette vidéo pendant 7 jours Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !

Fiche de cours

La fonction logarithme népérien

 

Définition

 

La fonction logarithme népérien est la fonction \(f\) définie et dérivable sur \(]0;+\infty[\) tel que

\(f(1)=0\) et \(f'(x)=\dfrac{1}{x}\)

\(\ln\) est la primitive de \(x\mapsto\dfrac{1}{x}\) sur \(]0;+\infty[\) qui s'annule en 1.

 

Propriétés algébriques


Pour tous réels $x>0$ et $y>0$ :

$\ln (xy)= \ln x+\ln y$

$\displaystyle \ln ( \displaystyle\frac{1}{x}) = -\ln x$

$\displaystyle \ln ( \displaystyle\frac{x}{y}) = \ln x-\ln y$

$\displaystyle \ln ( x^n) = n \ln x$ avec n $\epsilon$ $\mathbb{Z}$

Exemple :

Réduire : $A=\ln8-3\ln16$  et  $B$= $\displaystyle \frac{4\ln9+5\ln27}{\ln3}$.

étape 1: On réécrit l'expression $A$ pour faire apparaître $\ln 2$.

$A=\ln 2^3-3\ln 2^4$

étape 2 : On utilise les propriétés algébriques du logarithme népérien pour simplifier l'expression :

$\displaystyle \ln (x^n)=n\ln x$ avec $\displaystyle n \in \mathbb{Z}$.

$A=3\ln 2-12\ln 2$

$A=-9\ln 2$

étape 3: On réécrit l'expression $B$ pour faire apparaître $\ln 3$.

$B$= $\displaystyle \frac{4\ln 3^2+5\ln 3^3}{\ln 3}$

étape 4 :

Il reste 70% de cette fiche de cours à lire
Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.