Cours Fonctions linéaires et affines

Déterminer une fonction affine connaissant 2 points - Le rappel de cours

Accède gratuitement à cette vidéo pendant 7 jours Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !

Fiche de cours

Déterminer une fonction affine connaissant 2 points

 

Méthode :

 

Une fonction affine est de la forme $f(x) = ax + b$, où $a$ est le coefficient directeur et $b$ l'ordonnée à l'origine.

Il s'agit de déterminer les valeurs de $a$ et de $b$ connaissant les coordonnées de deux points appartenant à la représentation graphique de $f$.

La représentation graphique ci-dessous n'est point utile mais permet tout de même de visualiser la fonction $f$. 

 

 1fef83bb43e55ee09939c8b67da1d1cc5bceb22a.png

 

Les points connus sont $N(2; 0)$ et $P(-1; -3)$. 

Si un point appartient à la courbe représentative de la fonction $f$, alors ses coordonnées vérifient l'équation de $f$, sachant que $x$ correspond à l'abscisse du point et $f(x)$ à son ordonnée. 

Ainsi, comme $N$ appartient à la droite, on peut alors écrire : $a \times 2 + b = 0$. 

De même, $P$ appartient à la droite, donc $a \times (-1) + b = -3$.

 <

Il reste 70% de cette fiche de cours à lire
Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.