Cours Forme canonique

Forme canonique

Accède gratuitement à cette vidéo pendant 7 jours Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !

Fiche de cours

Forme canonique

 

Une fonction polynomiale de degré 2 définie sur $\mathbb{R}$ s'écrit sous la forme $f(x) = ax^2 + bx + c$, avec $a \neq 0$.

Sa représentation graphique est une parabole tournée vers le haut ou le bas selon le signe de $a$. 

 

Cette fonction admet une autre écriture de la forme $f(x) = a(x -\alpha)^2 + \beta$ avec $\alpha, \beta \in \mathbb{R}$ : c'est la forme canonique.

 

Considérons l'exemple suivant : $f(x) = 2x^2 - 4x + 5$ pour $x \in \mathbb{R}$. 

La première étape afin de parvenir à la forme canonique de $f$ consiste à factoriser les termes en $x$ et $x^2$ par $a$.

Ainsi, $f(x) = 2(x^2 - 2x) + 5$. Il faudra prêter une attention particulière au signe de $a$.

 

Il s'agit maintenant de se remémorer les identités remarquables :
$(a + b)^2 = a^2 + 2ab + b^2$ que l'on réécrit sous la forme $(a + b)^2 - b^2 = a^2 + 2ab$. 

Ainsi, $x^2 - 2x$ correspond au début de l'identité remarquable ($a^2 + 2ab$) que l'on réécrit sous la forme $ x^2 - 2 \times 1 \times x$.

Ainsi, $a = x$ et $b = -1$ et on trouve alors $f(x) = 2 \left[(x - 1)^2 - 1\righ

Il reste 70% de cette fiche de cours à lire
Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.